Induction of multiple drug resistance in HMEC-1 endothelial cells after long-term exposure to sunitinib
نویسندگان
چکیده
Multiple drug resistance is still an unsolved problem in cancer therapy. Our previous study demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein (P-gp) in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of Dox treatment in a mice tumor model. In this study, we exposed human microvascular endothelial cells (HMEC-1) to sunitinib, a tyrosine kinase receptor inhibitor, to induce drug resistance. The results show that sunitinib treatment induced multiple drug resistance in these cells. They became resistant not only to sunitinib but also to Dox, paclitaxel, and vinblastine. Significant increases in P-gp (9.3-fold), ABCG2 (breast cancer resistance protein, 1.9-fold), and multidrug resistance-associated protein 1 (2.7-fold) gene transcription were found by quantitative polymerase chain reaction quantification, and their protein expression was confirmed by Western blot. These increases gave rise to an approximately five-fold increase in half maximal inhibitory concentration in these cells in response to sunitinib treatment in vitro. The inhibitors of adenosine triphosphate-binding cassette transporters did not reverse the drug resistance in sunitinib-resistant HMEC-1 cells, assumedly because of a blockage of the pump function caused by sunitinib. Our study indicates that the antiangiogenic drug sunitinib induces multiple drug resistance in endothelial cells. The induction of adenosine triphosphate-binding cassette transporters seems not to be responsible for observed multiple drug resistance, and the underlying mechanisms remain unknown.
منابع مشابه
Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells
Multiple drug resistance remains an unsolved problem in cancer therapy. A previous study has demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of doxorubicin treatment in a mouse tumor model. In the present study, the cross-resistance and sensitivity...
متن کاملRegulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.
Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors c...
متن کاملInduction of epithelial-mesenchymal transition via activation of epidermal growth factor receptor contributes to sunitinib resistance in human renal cell carcinoma cell lines.
Sunitinib is widely used for treating renal cell carcinoma (RCC). However, some patients do not respond to treatment with this drug. We aimed to study the association between sunitinib sensitivity and epithelial-mesenchymal transition (EMT) regulation via epidermal growth factor receptor (EGFR) signaling, which is a mechanism of resistance to anticancer drugs. Three RCC cell lines (786-O, ACHN,...
متن کاملThe yin yang of sunitinib: One drug, two doses, and multiple outcomes
Our recent work showed that sunitinib exerts dual effect on cancer cells in different dose ranges. In clinically relevant doses, cancer cells tolerate sunitinb cytotoxicity by upregulating pro-survival MCL-1 and activating mTORC1 signaling. Inhibition of MCL-1 or mTORC1 sensitized cancer cells to sunitinib. Analysis of tissues from patients correlated MCL-1/mTORC1 induction with resistance to s...
متن کاملUncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.
Dengue is the major Arbovirus in the world, annually causing morbidity and death. Severe dengue is associated with changes in the endothelial barrier function due to the production of inflammatory mediators by immune cells and by the endothelium. Dengue virus (DENV) replicates efficiently in human endothelial cells in vitro and elicits immune responses resulting in endothelial permeability. Unc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2014